If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27x^2+160x-256=0
a = 27; b = 160; c = -256;
Δ = b2-4ac
Δ = 1602-4·27·(-256)
Δ = 53248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{53248}=\sqrt{4096*13}=\sqrt{4096}*\sqrt{13}=64\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-64\sqrt{13}}{2*27}=\frac{-160-64\sqrt{13}}{54} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+64\sqrt{13}}{2*27}=\frac{-160+64\sqrt{13}}{54} $
| 15y−13y=6 | | 7x+4-4=-21 | | 9x=1/3=10/3 | | 8x-12=-4(5-x) | | 67+p=123 | | 6x+5=4x+4 | | w-6/5=12/5 | | -x–7=-9. | | 9n+7-2n=42 | | x2–8x–20=28 | | 3x+22=10x-6 | | -4x+3=7. | | 16/x-3=8/x | | −2x−5=−2x−5= x−17x−17 | | 4x^2-14x-30/x(x-3)=0 | | 8+2i/4+6i= | | 11.5=48k | | 4.7+10m=6.94 | | n=-8-n | | -10+9d=10d | | 6+x+6=19 | | 9=3(v-7)-6v | | 35x^2−25x=0 | | -10b-10=-8b+10 | | 4x+1/2=50 | | 81.9=7(m+2.9) | | -5x=-5. | | .99d=0.89d+10 | | 3u-1=4u-10 | | 2x+5+9x-7=86 | | 3(d−8)−5=9(d+2)+1 | | -20=-6+2(v-4) |